Functional, structural, and chemical changes in myosin associated with hydrogen peroxide treatment of skeletal muscle fibers.

نویسندگان

  • Ewa Prochniewicz
  • Dawn A Lowe
  • Daniel J Spakowicz
  • LeeAnn Higgins
  • Kate O'Conor
  • LaDora V Thompson
  • Deborah A Ferrington
  • David D Thomas
چکیده

To understand the molecular mechanism of oxidation-induced inhibition of muscle contractility, we have studied the effects of hydrogen peroxide on permeabilized rabbit psoas muscle fibers, focusing on changes in myosin purified from these fibers. Oxidation by 5 mM peroxide decreased fiber contractility (isometric force and shortening velocity) without significant changes in the enzymatic activity of myofibrils and isolated myosin. The inhibitory effects were reversed by treating fibers with dithiothreitol. Oxidation by 50 mM peroxide had a more pronounced and irreversible inhibitory effect on fiber contractility and also affected enzymatic activity of myofibrils, myosin, and actomyosin. Peroxide treatment also affected regulation of contractility, resulting in fiber activation in the absence of calcium. Electron paramagnetic resonance of spin-labeled myosin in muscle fibers showed that oxidation increased the fraction of myosin heads in the strong-binding structural state under relaxing conditions (low calcium) but had no effect under activating conditions (high calcium). This change in the distribution of structural states of myosin provides a plausible explanation for the observed changes in both contractile and regulatory functions. Mass spectroscopy analysis showed that 50 mM but not 5 mM peroxide induced oxidative modifications in both isoforms of the essential light chains and in the heavy chain of myosin subfragment 1 by targeting multiple methionine residues. We conclude that 1) inhibition of muscle fiber contractility via oxidation of myosin occurs at high but not low concentrations of peroxide and 2) the inhibitory effects of oxidation suggest a critical and previously unknown role of methionines in myosin function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Age-related decline in actomyosin structure and function.

This review focuses on the role of changes in the contractile proteins actin and myosin in age-related deterioration of skeletal muscle function. Functional and structural changes in contractile proteins have been determined indirectly from specific force and unloaded shortening velocity of permeabilized muscle fibers, and were detected directly from site-directed spectroscopy in muscle fibers ...

متن کامل

Electron paramagnetic resonance reveals age-related myosin structural changes in rat skeletal muscle fibers.

We tested the hypothesis that low specific tension (force/cross-sectional area) in skeletal muscle from aged animals results from structural changes in myosin that occur with aging. Permeabilized semimembranosus fibers from young adult and aged rats were spin labeled site specifically at myosin SH1 (Cys-707). Electron paramagnetic resonance (EPR) was then used to resolve and quantify the struct...

متن کامل

Skeletal Muscle Contractions Induce Acute Changes in Cytosolic Superoxide, but Slower Responses in Mitochondrial Superoxide and Cellular Hydrogen Peroxide

Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in...

متن کامل

Skeletal muscle molecular alterations precede whole-muscle dysfunction in NYHA Class II heart failure patients

BACKGROUND Heart failure (HF), a debilitating disease in a growing number of adults, exerts structural and neurohormonal changes in both cardiac and skeletal muscles. However, these alterations and their affected molecular pathways remain uncharacterized. Disease progression is known to transform skeletal muscle fiber composition by unknown mechanisms. In addition, perturbation of specific horm...

متن کامل

A new reduced mathematical model to simulate the action potential in end plate of skeletal muscle fibers

Usually mathematicians use Hodgkin-Huxley model or FitzHug-Nagumo model to simulate action potentials of skeletal muscle fibers. These models are electrically excitable, but skeletal muscle fibers are stimulated chemically. To investigate skeletal muscle fibers we use a model with six ordinary differential equations. This dynamical system is sensitive to initial value of some variables so it is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 294 2  شماره 

صفحات  -

تاریخ انتشار 2008